大气背景场对云中液态水反演结果影响
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划课题(2019YFC1510301)、天津市自然科学基金面上项目(20JCYBJC00010)共同资助


Effect of Atmospheric Background Field on Retrieval Results of Liquid Water Path in Clouds
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于机载对空微波辐射计GVR讨论应用BP神经网络算法反演液态水路径时大气背景资料对反演结果的影响,为合理选择训练样本获取更准确的液态水观测数据提供依据,同时有利于了解反演算法的探测适用范围。文章选择多个历史探空资料,按照历史资料时间序列长度、季节和区域进行分类,建立不同类样本集训练BP神经网络获取反演方程,选择样本检验集模拟计算每类反演方程的反演精度,通过反演精度对比分析大气背景资料差异在反演云中液态水时造成的影响。结果表明训练样本的大气背景时空差异影响反演结果,在一定时间范围内增加历史资料序列长度可以减小大气背景差异对反演误差的影响,但当时间序列长度到达一定程度时,增加历史样本量将不再是提高反演精度的一种有效措施。季节分类可以减小大气背景差异对反演误差的影响,但在实际应用中,资料分类带来样本容量减小,对一定时间序列长度的历史资料,按照季节进行分类并不能有效提高垂直累积液态水的反演精度。

    Abstract:

    The influence of atmospheric background data on liquid water path retrieval results is discussed based on the airborne GVR and BP neural network algorithm. It provides a basis for reasonably selecting training samples to obtain more accurate liquid water observation data and is beneficial to understand the detection scope of the retrieval algorithm. Multiple historical sounding data are selected and classified by historical data time series length, season, and region. Different training sample sets are established to train BP neural networks to obtain the corresponding retrieval equations. The sample test set is selected to calculate the retrieval accuracy of each type of retrieval equations. The influence of atmospheric background data difference on liquid water path retrieval results is analyzed by retrieval accuracy comparison. The results show that the spatial and temporal differences in the atmospheric background of the training samples influence the retrieval results. The effect of atmospheric background differences on the retrieval error can be reduced by increasing the length of historical-sounding data. However, it does not work when the time series length reaches a certain extent. Seasonal classification can reduce the impact of atmospheric background differences on retrieval error, but data classification reduces the sample size in practice. For the historical data of a certain time series length, classification according to the season cannot effectively improve the retrieval accuracy of the liquid water path.

    参考文献
    相似文献
    引证文献
引用本文

王婉,聂皓浩,陈超,郭晓军.大气背景场对云中液态水反演结果影响[J].气象科技,2023,51(2):175~182

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-06
  • 定稿日期:2023-01-30
  • 录用日期:
  • 在线发布日期: 2023-04-27
  • 出版日期:
您是第位访问者
技术支持:北京勤云科技发展有限公司