2015, 43(5):849-857.
Abstract:
By using the NS equation and a basic hypothesis, the stellar atmospheric mean zonal wind and mean pressure formulas are derived. Based on these equations, the causes of earth atmospheric zonal wind system, mean pressure and subtropical high are discussed and numerically simulated. The results show that earth atmospheric zonal wind is formed by the density difference between atmospheric microcells and benchmark atmosphere. When the density of atmospheric microcells is greater (less) than benchmark atmospheric density, the direction of wind is westerly (easterly); the greater the density difference is, the stronger the wind will be. In middle and high latitude regions, the solar radiation absorbed by atmospheric microcell is less than their radiation into the space, which makes the density increase, so the west wind prevails in middle and high latitude regions; in the low latitude region, east wind prevails because the solar radiation absorbed by atmospheric microcell is more than their radiation. In summer (winter), the solar radiation strengthens (weakens), which makes the density of atmospheric microcells increase (decrease) and leads to the west wind in middle and high latitude areas weakening (strengthening) and east wind in the low latitude areas strengthening (weakening). The wind speed is proportional to cosine of latitude, which makes the strongest westerly belt located in the middle latitude region but not polar region where the density of atmospheric microcells is the biggest, and it also makes the strongest east wind appears not around the direct sunlight point but near the equator side. According to the pressure formula and the meridional difference of atmospheric density, the distribution feature that the pressure decreases as latitude increases in the middle and high latitude regions can be gained. The decreasing of density caused by solar radiation in the low latitude region is the main reason to make the pressure higher in this region than in middle and high latitude areas. The sine of latitude on equator is zero, so there exists a minimum of pressure on the equator, which leads to the formation of the equatorial trough and subtropical high, and the stronger the solar radiation is, the stronger the subtropical high will be. Because of the existence of latitude sine factor, the axis of ridge is always on the polar side of the direct sunlight point. Based on assumption that the solar atmosphere is ideal gas, the formula of the solar atmospheric rotation angular velocity with latitude is derived by using the NS equation, which explains the cause of the solar differential rotation; that is, the micelle density at low latitudes is larger than that at high latitudes and it is largest at the equator. The formula is fully consistent with the empirical formula by observation in omitted higher order small items. These results indicate that the movement of the solar atmosphere has no difference with the earth atmosphere in formation mechanisms; the difference is that there is no solar radiation on the surface of the sun as the earth surface; the NS equation is suitable for all stars.